SSD proti pevným diskům v praktických testech

14. 10. 2011

Sdílet

 Autor: Redakce

SSD v praktických testech

Jak jsme vám slíbili v testu SSD, dva z disků, které Mirek testoval, jsem pro srovnání protáhl i praktickými testy, které používáme pro oveření výkonu klasických pevných disků v praxi a které reprezentují výkon disků při běžném používání a každodenních činnostech.

V případě SSD proběhlo jen pár decentních úprav používané metodiky, které ale na měřené výsledky nemají vliv. Protože kapacita SSD nedovouje být tak velkorysý při jejich vytváření, vytvořil jsem jen jediný oddíl a všechna data k testování umístil na něj. Vynechal jsem tedy opatření, která mají omezit vliv fragmentace pevného disku. Zatímco v případě klasických disků může mít fragmentace kvůli nutnosti přesouvat hlavičky výrazný vliv na rychlost, u SSD si s tím při dané přesnosti měření nemusíme lámat hlavu.

U SSD by také bylo zbytečné dělat znova měření výkonu na konci disku. U klasických HDD, kde rychlost čtení a zápisu závisí na obvodové rychlosti na používané stopě na plotně a čím blíže ke středu hlavičky jsou, tím je nižší. Na to je zaměřená část testů z inovované metodiky (všechny, ve kterých se pracuje s oddílem Z:). V případě SSD by měl ale být výkon napříč celým diskem konstantní, takže rychlost disku uprostřed a na konci by měla být stejná, proto jsem je měřil jen jednou a v grafech najdete stejné výsledky. Také vliv fragmentace je ve srovnání s klasickými pevnými disky jen minimální.

Do testu jsme vybrali dva disky – výkonný Kingston HyperX s řadičem SandForce s podporou SATA 6 Gb/s coby reprezentanta vyšší třídy a obyčejnější, ale o to populárnější 96GB Kingston SSDNow V+ 100 pro SATA 3 Gb/s s méně než poloviční deklarovanou maximální rychlostí čtení 230 MB/s a rychlostí zápisu 180 MB/s.

S oběma už jsme vás před pár dny v recenzích na Extrahardware seznámili, takže jen ve stručnosti zopakuji základní papírové parametry:

Kingston HyperX SSD (test)

  • řadič: SandForce SF-2281
  • paměťové čipy: Intel 25nm MLC NAND (5k P/E cyklů)
  • rozhraní: SATA rev. 3.0 (6 Gb/s) i SATA 3 Gb/s
  • maximální rychlost čtení a zápisu (sekvenční): 555/510 MB/s
  • podpora Trim a garbage collection

 

Kingston SSDNow V+ 100, 96 GB (test)

  • řadič: Toshiba T6UG1XBG
  • paměťové čipy: Toshiba MLC NAND
  • rozhraní: SATA 3 Gb/s a SATA 1,5 Gb/s
  • maximální rychlost čtení a zápisu (sekvenční): 230/180 MB/s
  • podpora Trim a garbage collection

Klasické pevné disky pro srovnání už znáte podrobně také, takže jen v rychlosti připomenu jejich parametry formou tabulky. Jejich podrobnější popis i fotografie najdete v dřívejším testu.

  WD Caviar Black WD2002FAEX,
2 TB
Seagate Barracuda Green ST2000DL003,
2 TB
Seagate Barracuda XT ST32000641AS,
2 TB
WD AV-GP WD20EURS,
2 TB
WD Caviar Green WD20EARS,
2 TB
Samsung Spinpoint Eco-Green F4 HD204UI, 2 TB

základní parametry

firmware 05.01D05 CC32 CC13 51.0AB51 51.0AB51 1AQ10001
kapacita (dekadická předpona) 2 TB 2 TB 2 TB 2 TB 2 TB 2 TB
velikost sektoru (AF) 512 B 4 KB 512 B 4 KB 4 KB 4 KB
rychlost otáčení 7200 ot./min. 5900 ot./min. 7200 ot./min. IntelliPower IntelliPower 5400 ot./min.
vyrovnávací paměť (cache) 64 64 64 64 64 32
kapacita na plotnu 500 GB (odhad) 667 GB 500 GB 667 GB (odhad) 667 GB (odhad) 667 GB (odhad)
počet ploten 4 (odhad) 3 4 3 (odhad) 3 (odhad) 3 (odhad)
počet hlaviček 8 (odhad) 6 8 6 (odhad) 6 (odhad) 6 (odhad)
hustota záznamu - 442 347 - - -
rozhraní SATA 6Gb/s SATA 6,0 Gb/s SATA 6,0 Gb/s SATA 3,0 Gb/s SATA 3,0 Gb/s SATA 3,0 Gb/s
udávaná hmotnost 750 g 635 g 700 g 640 g 640 g 650 g
NCQ ano ano ano ano ano ano

výkon

rychlost při čtení souvislých dat 138 MB/s 144 MB/s 138 MB/s 130 MB/s 110 MB/s -
průměrná přístupová doba, čtení - 12 - - - 8,9
průměrná přístupová doba, zápis - 13 - - - -
Power on to Ready 21 s 15 s 15 s - 13 s

hlučnost

hlučnost v idle 29 dB 21 dB 27 dB typ.,
29 dB max.
24 dB 24 dB 25 dB typ., 26 max.
hlučnost v seek mode 0 34 dB - - - 29 dB -
hlučnost v seek mode 3 30 dB 23 dB 29 dB typ.,
33 dB max.
25 dB 25 dB 28 dB typ. 29 max.

spotřeba

spotřeba ve standby 1,3 W 0,5 W 0,6 W 0,7 W (0,9 W) 0,7 W 1,0 W
spotřeba ve sleep 1,3 W 0,5 W 0,6 W 0,7 W (0,9 W) 0,7 W 1,0 W
spotřeba v idle 8,2 W 4,5 W 6,4 W 4 W (4,8 W) 3,3 W 5,1 W
spotřeba při náhodném čtení (seek) - - - - - 5,7 W
spotřeba při čtení/zápisu 10,7 W 5,8 W 9,2 W 4,5 W (5,3 W) 5,3 W 6,3 W

cena

špičkový proud na 12 V při startu - 2,0 A 2,8 A 1,7 A 1,8 A 2,0 A
cena 3 176 Kč 1 738 Kč 3 160 Kč 1 810 Kč 1 685 Kč 1 772 Kč

 

Praktické testy jsem se snažil připravit tak, aby nebyly nesmyslné nebo příliš umělé, zároveň musí trvat přijatelnou dobu a musí z nich dobře ilustrovat rozdíly ve výkonu disků.

Sestávají z následujících položek:

  • start Windows
  • načtení uložené pozice v Crysis
  • instalace dema hry Arma II:  Operation Arrowhead       
  • kopírování 2925,6 MB fotografií o obvklé velikosti 4–6 MB (14mpix JPEG) v Total Commanderu
  • spouštění Adobe Photoshop CS5 s otevíráním 300MB souboru PSD
  • demuxování 2GB MPEGug streamu (.TS) v ProjectX
  • střih a mux stejného souboru ve Womble MPEG Video Wizard
  • dekomprese dvou iso obrazů z dělených archivů z WinRAR

Přes veškerou snahu se tyto testy v několika ohledech liší od reálného používání a nezohledňují některé aspekty běžného používání PC. Jaké, to si vysvětlíme dále.

Co testy nezahrnují a jaká jsou jejich úskalí

Co testy nezahrnují a jaká jsou jejich úskalí

Fragmentace

Při běžném používání dochází u disků k fragmentaci (na různých úrovních). U klasických mechanických pevných disků může mít výrazný vliv na výkon. Typicky k ní dochází po promazání souborů a následném zápisu souborů do uvolněného prostoru, nebo při simultánním zápisu většího množství dat z několika aplikací najednou.

Pokud máte disk neustále nacpaný k prasknutí a mazání a opětovné zaplnění místa je u vás na denním pořádku, doby trvání čtení a zápisu větších souborů se prodlouží. Hlavičky disku budou totiž muset při práci s fragmentovanými soubory nebo fragmentovaným místem hodně cestovat po celé šířce plotny (a přesun hlaviček výrazně prodlužuje přístupovou dobu).

V takovém případě už hodně záleží na elektronice disku, firmwaru a tom, jak dobře dokáže těžit z cache a technologií jako NCQ, které mají vliv fragmentace snížit.

Problém je, že je prakticky nemožné delší používání disku nasimulovat tak, aby se dalo říct, že je disk před každým startem testů ve stejném stavu a testuje se za stejných podmínek a vždy totéž. Už z principu to není možné třeba při porovnávání disků různých kapacit.

Výkon při simultánním čtení/zápisu

Další věc simultánní zápis či čtení z více aplikací najednou. Typickým příkladem je start léta používaných a řádně „zahnojených“ Windows, u kterých se délka startu systému může protáhnout z původních desítek sekund na minuty jen kvůli tomu, že počítač při souběžném spouštění velkého množství rezidentních aplikací neví, co dělat dřív. Odezva na podnět uživatele jde do desítek sekund a počítač je ještě nějaký čas po náběhu systému nepoužitelný. Další možností je, že dojde ke kolizím, když systém pocítí potřebu pracovat se swapovacím souborem a nějaká aplikace zároveň touží číst nebo zapisovat na disk – potom se obě operace mohou také výrazně protáhnout.

Opět se to dá jen obtížně a opakovatelně nasimulovat. A po pravdě mě ani nenapadá, jaký rozumný scénář pro něco podobného zvolit. Ono by se sice nějak dalo spustit najednou kopírování 12GB videa, k tomu dávku zpracování fotografií v Zoneru a ještě kompresi adresáře s Crysis a změřit, za jak dlouho doběhne poslední test, ale který člověk se zdravým rozumem by na klasickém disku něco podobného častěji provozoval?

Nenechavý systém

U déle trvajících testů se může stát, že si Windows budou v průběhu testu chtít něco zapsat na disk. Klasický disk se s více požadavky na souběžný zápis či čtení nikdy nedokáže pořádně srovnat. Na rozdíl od vícejádrových procesorů, kde takový úskok stranou zabírá zlomek procesorového času a často se k němu využijí volná jádra, může takové zadrhnutí či nedej bože delší „chroustání“ během testování mechanických disků znamenat dramatický propad rychlosti a výrazné prodloužení trvání testu.

Velký vliv na výkon má i to, na jaké místo disku se právě zapisuje. Na rozdíl od syntetických testů, které jsou speciálně navržené na to, aby psaly na přesně určené a stále stejné místo disku, nelze přinutit systém, aby při opakování testů ukládal pokaždé na stejná místa.

A konečně – malá chyba jde u části těchto testů na konto toho, že časy u většiny praktických testů měřím ručně pomocí stopek. Není to zrovna sofistikovaná ani nejpřesnější metoda měření, z naměřených výsledků a odchylek je ale zřejmé, že chyba v řádech desetin sekundy má na rozptyl měření jen minimální vliv.

Chronograf Taksun WR30M T-58H

Pro testování používáme chronograf Taksun WR30M T-58H, který dokáže měřit čas s přesností na setinu sekundy.

Pořád až moc jednoduché

Ze všech výše uvedených důvodů pamatujte na to, že chyba měření a rozptyl naměřených hodnot je už z principu větší, než je tomu obvyklé při testech procesorů či karet. Co víc, tyto výsledky nevypovídají jednoznačně o výkonu – zjednodušení je dost velké a právě snaha o omezení fragmentace, která je neopakovatelná, to diskům dost zjednodušuje.

Do jisté míry se výsledky testů dají přirovnat k tomu, když výrobce uvádí, že na terabajtový disk se dá uložit 50 full HD filmů, milion fotek nebo 250 000 písniček. Pořád je to ale hmatatelnější a dá vám to o tom, jaké jsou rozdíly v praxi, lepší představu než skóre vykalkulované porovnáním několika syntetických testů.

Co a jak budeme měřit a testovací sestava

Disky prakticky

Klasické mechanické pevné disky byly pro praktické testy rozdělené na několik oddílů. U SSD na tom nezáleží, ale v případě klasických disků ano. Na disk se zapisuje opačně než na CD nebo DVD, funguje to podobně jako u gramofonové desky – od okraje ke středu. Plotny disku se stejně jako gramofonová deska otáčí konstantní rychlostí. Čím blíže jsou hlavičky ke středu ploten, tím nižší je obvodová rychlost a data se načítají pomaleji. Nejvyšší rychlosti čtení a zápisu tedy disky dosahují na začátku. Proto je ideální data, která budete používat nejčastěji, na disk „nasypat“ vždy jako první, nebo si pro ně vyhradit místo v oblasti, ve které ještě nedochází k výraznému poklesu výkonu.

Na začátku disku, v nejrychlejší oblasti, je 50GB oddíl (C:), na kterém je nainstalovaný operační systém (Windows 7 x64 SP1). Dále následuje 10GB oddíl (W:) pro swapovací soubor s pevnou velikostí a dalších 10 GB má oddíl pro dočasné soubory (Temp) označený jako T:.

Díky tomu, že je swapovací soubor na samostatném oddílu a má pevnou velikost, nehrozí, že by se vlivem fragmentace rozptýlil po celém disku tam, kde je zrovna náhodou místo.

Na oddíl T: jsou přesměrované uživatelské a systémové proměnné TEMP a TMP, programy by tedy při vytváření dočasných souborů neměly zapisovat na systémový disk C: mezi ostatní systémové soubory, ale na vyhrazený oddíl (opět hlavně kvůli snížení rizika nepřesností vlivem fragmentace).

Protože jsme tři primární oddíly vyčerpali, čtvrtý už musí být rozšířený. Na něm, stále ještě v rychlé části, je pak 40GB oddíl (X:) pro zdrojová data používaná při testování. Na konci disku je 20GB oddíl Z:, na kterém testuji výkon disku v nejpomalejší a na výkon nejkritičtější oblasti. Zbývající prostor mezi oddílem X: a Z: vyplnil předposlední oddíl Y:, na kterém probíhají všechny praktické testy.

Jak testy probíhají

Před každou sadou testů datové disky Y: a Z: kompletně promáznu pomocí rychlého formátování. Tím se zbavím nejen nepotřebných dat, ale i případné fragmentace.

Následuje spuštění příkazu Rundll32 advapi32.dll s parametrem ProcessIdleTasks (ve stručnosti: spustí okamžitě úlohy, které se jinak pouští v případě, že je počítač po určitou dobu v nečinnosti. Zmenší se tím pravděpodobnost, že bude systém při testování pouštět úlohy, které automaticky pouští po nějaké době nečinnosti, což může výrazně ovlivnit výsledky).

Poté ještě vymažu obsah adresáře C:\Windows\Prefetch (údaje pro SuperFetch, který na základě historie chování uživatele načítá po spuštění systému z disku do paměti předem knihovny k programům, které bude chtít pravděpodobně spouštět). S aktivním a správně vyškoleným SuperFetch se radikálně zkrátí doba načítání aplikací, pro nás je ale podstatné, že by kvůli tomu mohlo docházet ke zkreslení výsledků, protože obsah prefetche se dynamicky mění s každou další spuštěnou aplikací a systém by pokaždé načítal něco jiného.

Poté už následuje vypnutí počítače a měřený start systému. Po „restartu“ je důležité spouštět každou instanci příslušného testu jen jednou, jinak se může stát, že systému zůstane něco „viset“ v operační paměti a při opětovném puštění testu bez restartu sáhne místo disku právě do mnohonásobně rychlejší paměti.

Testovací konfigurace

Pevné disky testujeme na stejné sestavě, jako grafické karty. Protože použitá starší deska od Gigabyte pro platformu LGA 1366 nemá ještě integrovaný řadič SATA 6 Gb/s, do slotu PCIe ×4 jsme osadili samostatný řadič Kouwell osazený čipem Marvell 9128, čip, který řada výrobců integruje i na základní desky.

V systému je nainstalovaná i záplata KB982018, která
má vylepšovat výkon disků s Advanced Disk Formátem se 4KB sektory.

Podrobný popis testovací sestavy najdete v článku Ze zákulisí: nové sestavy pro měření grafik a hlučnosti

Základní deska Gigabyte EX58-UD5 je osazená „extrémním“ šestijádrovým Core i7-980X. Procesor je přetaktovaný na 3,8 GHz při napětí zvýšeném na 1,344 V (podle CPU-Z).

V BIOSu jsou vypnuté úsporné technologie. Důvod je opět jednoduchý – co nejvíce omezit vliv procesoru při měření spotřeby grafické karty. Kvůli snížení chyby při měření, ke kterým by jinak docházelo kvůli automatickým a nevyzpytatelným změnám taktovací frekvence, je vypnutý Turbo Boost.

testovací sestavy 27

Paměti DDR3-1600 běží na 1360 MHz při časování 8-8-8-22-1T a 1,64 V.

Procesor chladí výkonný Coolink Corator DS, který můžete znát z testu zveřejněného na ExtraHardware.

„Levný“ Centurion od Cooler Master se k podobné sestavě na pohled ani trochu nehodí, ale jde o skříň s typickou (a stále ještě nejčastěji používanou) koncepcí a konfigurací chlazení. V bočnici jsem zalepil otvor v místě chladiče procesoru – při použitém chladiči procesoru a daném uspořádání systémového chlazení nadělal víc škody než užitku.

testovací sestavy 23

Vepředu je 1000otáčkový Cooler Master dodávaný se skříní. Zadní systémový ventilátor Nanoxia FX12 (možná si jej ještě pamatujete z naší recenze) může v případě potřeby běžet až na 2000 ot./min, pomocí panelu je zregulovaný na 1500 ot./min, při kterých je aerodynamický hluk ještě únosný.

O napájení se stará 920W Enermax Revolution 85+ má vysokou účinnost, nabízí vysoký výkon a umožňuje i bezproblémový provoz řešení postavených na 3-way SLI či CrossFireX ze tří karet. Při časté manipulaci se náramně hodí odpojitelná kabeláž, která ve skříni zbytečně nepřekáží. K samotnému průvanu ve skříni zase tolik nepřispívá, ventilátor obvykle běží v rozmezí 800-900 ot./min.

Pevný disk VelociRaptor VR150 (WD3000GLFS) s kapacitou 300 GB používáme především kvůli rychlejšímu načítání her.

testovací sestavy 28

 

Procesor

Intel Core i7-980X

základní parametry

počet jader / vláken 6 / 12
taktovací frekvence 3,33 GHz
násobič 25×
TurboBoost až 3,6 GHz, násobič 1/1/1/1/2/2
cache 12 MB

použité nastavení

taktovací frekvence 3,8 GHz (28 × 136 MHz), 1,344 V, vypnutý HyperThreading, TurboBoost a C1E/EIST

recenze

Šestijádrový Intel Core i7-980X (Gulftown) v testu
Intel Za zapůjčení procesoru děkujeme společnosti Intel

 

Základní deska

Gigabyte GA-EX58-UD5

základní parametry

patice LGA 1366
čipová sada Intel X58, ICH 10R
paměťové sloty 6× DDR3, max. 24 GB
PCIe sloty, PCI sloty 3× PCIe ×16 (16+16+1/16+8+8), 1× PCIe x4, 1× PCIe ×1, 2× PCI
podrobné specifikace viz specsheet

recenze

Gigabyte EX58-UD5: výkon s Ultra Durable 3
Za zapůjčení základní desky děkujeme společnosti Gigabyte
 

 

Paměti

Kingston KHX1600C7D3K3/6GX (3× 2 GB)

základní parametry

typ DDR3
taktovací frekvence 1600 MHz
časování 7-8-7-20
napájecí napětí 1,65 V
udávaná spotřeba 1,8 W na modul
podrobné specifikace viz specsheet

použité nastavení

takt/časování 1360 MHz, 8-8-8-22-1T, 1,64 V
Kingston Za zapůjčení pamětí děkujeme společnosti Kingston

 

Pevný disk

Western Digital VelociRaptor VR150 (WD3000GLFS)

základní parametry

kapacita 300 GB
otáčky 10 000 ot./min
rozhraní SATA 3 Gb/s
vyrovnávací paměť 16 MB
průměrná přístupová doba (čtení/zápis) 4,2 ms / 4,7 ms
podrobné specifikace viz specsheet
  Za zapůjčení pevného disku děkujeme společnosti Western Digital

 

Optická mechanika

Lite-On DH4O1S

základní parametry

typ BD-ROM
podporované formáty [BD] BD-R, BD-RE , BD- ROM , BD-R DL , BD-RE DL , BD- ROM-DL
[DVD] DVD Video, DVD-5, DVD-9, DVD-10, DVD-18, DVD+RW 4.7GB, DVD+R 4.7GB, DVD-RW 4.7GB (closed session), DVD-R 4.7GB, DVD+R9
[CD] CD-DA, RAW, CD-ROM XA (m1,m2,m2f1/m2f2), CD-R, CD-RW, CD-PLUS, CD-I
rychlost čtení BD-R/RE/ROM/SL/DL : 4× CAV
DVD +R/-R SL : 12×
DVD +R/-R DL : 8×
DVD +RW/-RW SL :

DVD-9 : 8×
CDR/CDRW : 32×
podrobné specifikace viz specsheet
Za zapůjčení optické mechaniky děkujeme společnosti LiteOn

 

Zdroj

Enermax Revolution 85+ ERV920EWT-00, 920 W

základní parametry

celkový výkon 920 W
špičkový výkon 1010 W
podrobné specifikace viz specsheet
Za zapůjčení zdroje děkujeme společnosti Enermax

 

Skříň

Cooler Master Centurion 534

základní parametry

formát miditower
standard ATX

 

Chladič

Coolink Corator DS

základní parametry

podporované patice Intel LGA 775/1156/1366, AMD AM2/AM2+/AM3
rozměry 155 × 140 × 121 mm
hmotnost pasivu 1040 g
materiál měděná základna, hliníková žebra
ventilátor 120 × 120 × 25 mm, 800–1700 ot./min, PWM
podrobné specifikace viz specsheet

recenze

Test chladičů (finále): Noctua, Thermalright, Zalman…
  Za zapůjčení chladiče děkujeme společnosti Rascom

 

Operační systém, nastavení a ovladače

  • Microsoft Windows 7 Ultimate (64bitová verze)
  • vypnuta automatické defragmentace, aktualizace i swap file na
    všech jednotkách
  • DirectX redist August 2010
  • Intel INF
    9.1.1.1

Grafické karty testujeme na 30" LCD panelu HP LP3065

Start Windows, načtení uložené pozice v Crysis, instalace dema Arma2: OA

Start Windows

Aby na tom byly všechny disky stejně, na každý disk klonuji předem připravenou instalaci Windows. Aby byly výsledky i nadále porovnatelné, jsou zakázané automatické aktualizace. Nainstalováné jsou všechny záplaty, které byly dostupné počátkem srpna 2011 včetně záplaty KB982018, která má zvyšovat výkon na discích se 4kB sektory (advanced format).

Při startu Windows měřím čas, který uplyne od startu počítače do spuštění Windows a Total Commandera (spouští se automaticky po startu, zástupce je zkopírovaný do složky Po spuštění v nabídce Start). Pro přeskočení přihlašovací obrazovky je vypnuté vyžadování hesla (pomocí „spustit…“, příkaz „control userpasswords2“).

Během měření zaznamenávám i mezičas, ve kterém doběhnou procedury obvyklé po spuštění počítače POST (power-on self test) a zobrazí se obrazovka s oznámením o startu Windows. Čistý čas od zapnutí PC nepočítám, protože se občas stane, že se počítač právě při úvodních testech při některé detekci či testu zdrží, což ovlivní i celkovou dobu do spuštění systému, aniž by byl na vině pevný disk. Oba časy od sebe odečtu a dostanu čistou délku startu systému uvedenou v grafu.

Načtení uložené pozice v Crysis

V prvním díle ze ságy Crysis načítám uloženou pozici z první mise. Kolik času načítání zabralo, lze po načtení snadno zjistit z příkazové konzole.

Instalace dema hry Arma II: Operation Arrowhead

Instalaci dema hry Arma II: Operation Arrowhead jsem zvolil proto, že jde o dostatečně velký balík dat (asi 2,54 GB), instalace netrvá příliš dlouho (něco přes minutu), mezi jednotlivými disky jsou zřetelné rozdíly a konečně je veřejně dostupná, takže ji můžete sami vyzkoušet. Instaluje se na rychlejší oddíl Y:, čas je ale bohužel nutné měřit stopkama.

Kopírování fotografií, spuštění Adobe Photoshop s otevřením souboru

Kopírování 2,93 GB fotografií (14mpix JPEG) o obvyklé velikosti 4–6 MB

U testu kopírování jsem nevymýšlel žádné skopičiny a nezkoumal syntetické testy, které mají tuto činnost nějak simulovat (ostatně právě kvůli jejich syntetické povaze mají různá úskalí, ze kterých dobře profitují třeba inteligentnější řadiče u některých SSD). A nevyužívám ani žádnou aplikaci, která je pro tyto testy určená, zajímal mě opět jen příklad z praxe.

Nedával jsem ani dohromady nesmyslné směsice rozličně velkých souborů (jak často kopírujete adresář, ve kterém jsou pohromadě tři HD videa, sto padesát fotek a tisíc malých dokumentů z Office, že?), ale sáhl jsem po jednom z nejčastějších scénářů, na které u mě při práci s počítačem dochází a které zabírají dost času na to, aby byly otravné – kopírování fotografií uložených do JPEGu. Velikost souborů se pohybuje v rozmezí 2–8 MB, přičemž 587 z celkových 643 souborů má mezi 4–6 MB.

Ke kopírování používám Total Commander (v7.56). A domnívám se, že u většiny lidí, kteří se zajímají o výkon pevných disků, tomu bude právě tak. Total Commander umožňuje i pokročilejší nastavení vyrovnávací paměti optimalizované v závislosti na konfiguraci disků v PC (Konfigurace>Možnosti…>Funkce>Kopírování a odstranění), jelikož ale tyto testy probíhají pouze s jediným diskem a většina uživatelů se stejně v tomto nastavení zřejmě nevrtá (pokud o něm vůbec ví), nechávám zapnutou standardní metodu kopírování.

Kopíruje se ze zdrojového oddílu (X:) na rychlejší partition (Y:) i na pomalejší oddíl (Z:) na konci disku. Druhé dávce kopírování na pomalejší oddíl pochopitelně předchází restart počítače, aby se nestalo, že počítač pro některý ze souborů místo na disk sáhne do cache v RAM.

V prvním grafu je vždy doba trvání celé operace, ve druhém pak stejná hodnota přepočtená na MB/s.

Spouštění Adobe Photoshop CS5 s otevíráním 358MB souboru PSD

Jen málokterá z aplikací pije již po léta svým uživatelům délkou startu krev tak jako Adobe Photoshop. I když se to s příchodem SSD a u novějších verzí zlepšuje, u populárních aplikací nenajdete moc startovacích obrazovek, které by se vám tak dobře a tak rychle vryly do paměti. Pro použitelné měření se stopkami v rukou ale paradoxně nabíhá pořád příliš rychle, proto mu ještě „pomáhám“ tím, že jej spouštím otevřením souboru o velikosti téměř 400MB (14mpix fotografie s řadou vrstev).  Na spuštění Photoshopu a otevření fotografie si tak na většině současných pevných disků disku musíte počkat bezmála dvacet sekund.

Demux videa v ProjectX, střih videa bez rekomprese ve Womble MPEG Video Wizard, rozbalování archivu RAR

Demux 3,67GB mpeg streamu (.TS) v ProjectX

Jednou z činností, u kterých má výkon disku na dobu trvání velký vliv, je kvůli velkým objemům dat práce s videem. Při klasickém střihu s následnou rekompresí do jiného formátu ovlivňuje výrazně dobu trvání výkon enkodéru, ať už se o převod videa stará procesor nebo grafický čip. Výkon disku už není v takových případech při dnešních rychlostech tak kritický, a při testu by se spíš než disky zapotil procesor nebo grafická karta. Proto jsem sáhl k jinému scénáři, který není tolik náročný na procesorový výkon, ale disk se při něm protáhne – demuxu (demultiplex, rozdělení více datových toků, v tomto případě obrazové a zvukových stop) MPEG-2 videostreamu ve formátu TS, tedy MPEG transport stream, nahraného z digitálního vysílání.

Pro demux využívám populární javový open source ProjectX. Zdrojový soubor z datového disku X: převádím do rychlejšího oddílu Y: i do pomalého oddílu Z: na konci disku.

Při této zdánlivě nevinné a nenáročné činnosti se ProjectX bůhví proč chová hodně nevypočitatelně – rozptyl výsledků je obrovský a nedá se přesně říct, do jaké „nálady“ programu se zrovna trefíte. I tak má ale svou vypovídací hodnotu – patrné je zejména prodloužení doby trvání při práci v pomalejší části disku. Také je to dobrá připomínka toho, že papírově či synteticky výrazně rychlejší disk nemusí automaticky a za všech okolností znamenat rychlejší práci, ale občas prostě záleží i na štěstí a na tom, co se v systému zrovna odehrává.

Střih a mux videa ve Womble MPEG Video Wizard

Womble MPEG Video Wizard je oblíbený, protože na rozdíl od monster jako Adobe Premiere je jednoduchý na ovládání, je levný a hlavně umožňuje střih videa bez rekomprese, pročež je třeba mezi majiteli digitálních tunerů oblíbeným nástrojem k vystříhávání reklam z nahrávek.

Jako zdroj využívám soubor s audiem a videem z předchozího kroku. Jelikož se při ukládání zdrojové video znovu neenkóduje, pouze vynechá vystřižené pasáže a následně vše spojí do jednoho kontejneru (v tomto případě .mpg), největší vliv na rychlost má v tomto testu opět výkon pevného disku. Ve srovnání s javovým ProjectX je rozptyl hodnot o něco menší, ale výjimečně také některé měření ujede.

Rozbalování archivu RAR (11,8 GB)

Při testech dekomprese se pomocí příkazové řádky rozbaluje dvojice ISO obrazů rozdělená do 100MB archivů. Dekomprimuje se pomocí dávky, která zároveň zaznamenává do logu čas zahájení a dokončení celé operace. Rozbaluje se na rychlejší oddíl Y: i na pomalejší Z:.

Závěrečné shrnutí

Záverečné shrnutí

Výsledky testu trochu křivdí Kingstonu HyperX, pravděpodobně byl přiškrcený použitým řadičem pro SATA 6 Gb/s, který využívá čip Marvell 9128. Kvůli porovnatelnosti výsledků s naměřenými disky ale nemůžu SSD posadit do jiné sestavy s LGA 1155 a integrovaným řadičem SATA od Intelu, který by byl asi nejvhodnější.

Maximální rychlost sekvenčního čtení, kterou se mi na Marvellu povedlo naměřit, se totiž pohybovala kolem 400 MB/s, přestože na řadičích integrovaných v čipsetech se dá dopracovat k hodnotám kolem 450–520 MB/s.

Použití přídavného řadiče Marvell není dobrým řešením ani z jiného důvodu – i přes nahrazení používaných ovladačů řadiče poslední dostupnou verzí 1.2.0.1006 docházelo občas (zejména při zápisu na disk) k pádům systému s BSOD.

Přestože je maximální naměřená rychlost 400 MB/s ve srovnání s levnějším Kingstonem SSDNow jen o málo míň než dvojnásobná hodnota, rozdíl ve výkonech obou disků není zdaleka tak dramatický a troufám si odhadnout, že ani spíše teoretických 100 MB/s navíc by výkonu disku moc nepřidalo.

Důvod? Většina z praktických testů pracuje s (a docela dobře) komprimovanými daty. Řadiče SandForce dost těží právě z komprese dat při ukládání, ale v případě, že kopírujete nebo ukládáte JPEGy, dekomprimujete archiv ISO (který je v běžných programech rovněž obtížně komprimovatelný) nebo stříháte video ve ztrátovém MPEGu, jednoduchá komprese v SSD už toho moc nevymyslí.

Při práci s běžnými soubory (ideálně textovými) a dokumenty by měl být výkon přece jen o něco lepší. Ale i v jejich případě musím připomenout, že s bobtnající velikostí souborů se už i vývojáři aplikací naučili využívat pro ukládání souborů a dokumentů kompresi.

Dokumenty z Wordu nebo Excelu, soubory PSD, MP3, videa v nejrůznějších formátech a ani datové soubory ve hrách už dávno neplýtvají místem tolik jako kdysi a tak se ani v jejich případě nedá počítat s tím, že chytrý SandForce, kterému to tak dobře jde v syntetických testech, moc pomůže.

Z grafů a porovnání s klasickými disky je ale zřejmé, že největší výkonnostní skok zaznamenáte přechodem z klasického disku klidně i na levnější SSD. V případě velkých objemů dat je skok způsobený vyšší rychlostí sekvenčního čtení a zápisu, než mohou v současnosti nabídnout diskové plotny, při simultánní práci s větším množstvím menších souborů (např. při startu OS) zase řádově kratšími přístupovými časy. Rozdíl mezi slušným a špičkovým SSD už není tak dramatický.

ICTS24

Nerad bych ale tímto závěrem odstřelil výkonné SSD s čipy SandForce s tím, že je to zbytečné vyhazování peněz, záleží zejména na nasazení. Zatímco řada syntetických testů je zvýhodňuje, zvolená metodika praktických testů, kterou jsem šil na míru klasickým diskům a práci s velkými objemy dat (které jsou obvykle komprimované), je pro ně naopak prakticky nejhorším scénářem, který může nastat.

 

Za poskytnutí pevných disků do srovnání děkujeme obchodu Alfa.cz